Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials
Authors
Abstract:
Zirconia-nickel functionally graded materials were obtained by powder metallurgy technique. The microstructure, residual stress, fracture toughness and Vickers hardness were investigated. Mixed-mode fracture response of YSZ /Ni functionally graded materials was examined utilizing the three point bending test and finite element method (Cosmos/M 2.7). The results show that the stress intensity factors (KI, KII) for the FGM are less than those for non-graded composite (NGCs) under mixed mode loading conditions. There are some local perturbations in the crack propagation paths of the FGM and NGC specimens. Most of local perturbations exhibit in the layers with high Ni content such as the layers with 30%, 40% and 50% Ni, respectively. The local perturbations are believed to be caused by the local heterogeneity of the microstructure. The residual stress (maximum tensile stress) of the NGC (YSZ/50%Ni) was 122 MPa and was in agreement with the published paper.
similar resources
Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
full textCrack propagation due to brittle and ductile failures in microporous thermoelastoviscoplastic functionally graded materials
Plane strain transient finite thermomechanical deformations of heat-conducting functionally gradient materials comprised of tungsten and nickel–iron matrix are analyzed to delineate brittle/ductile failures by the nodal release technique. Each material is modeled as strain-hardening, strain-rate-hardening and thermally-softening. Effective properties are derived by the rule of mixtures. At nomi...
full textMixed-Mode Dynamic Crack Growth in Functionally Graded Glass-Filled Epoxy
Compositionally graded glass-filled epoxy sheets with edge cracks initially along the gradient are studied under dynamic loading conditions. Specimens with monotonically varying volume fraction of reinforcement are subjected to mixed-mode loading by eccentric impact relative to the crack plane. The optical method of Coherent Gradient Sensing and high-speed photography are used to map transient ...
full textFinite element evaluation of mixed mode stress intensity factors in functionally graded materials
This paper is directed towards :nite element computation of fracture parameters in functionally graded material (FGM) assemblages of arbitrary geometry with stationary cracks. Graded :nite elements are developed where the elastic moduli are smooth functions of spatial co-ordinates which are integrated into the element sti=ness matrix. In particular, stress intensity factors for mode I and mixed...
full textDisk Vibration Analysis of Functionally Graded Materials
Perforated discs have many applications in different parts of industry. By making such disks of functionally graded materials, more capabilities can be obtained from them. Vibration analysis of these kinds of disks can help us make them more efficient. In this paper, modeling and evaluation of disk vibration of functionally graded materials with regard to thickness were carried out using Abaqus...
full textFunctionally Graded Materials
Thermoelastic simulation of functionally graded materials is practically important for engineers. Here, the extension and assembly of our two previous papers (Computational Mechanics 2006, 38, p51-60; Engineering Analysis with Boundary Elements 2008, 32, p704-712) is presented to evaluate the transient temperature and stress distributions in two-dimensional functionally graded solids. In this c...
full textMy Resources
Journal title
volume 26 issue 8
pages 885- 894
publication date 2013-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023